Scalable and compact 3D action recognition with approximated RBF kernel machines
نویسندگان
چکیده
منابع مشابه
Scalable and Compact 3D Action Recognition with Approximated RBF Kernel Machines
Despite the recent deep learning (DL) revolution, kernel machines still remain powerful methods for action recognition. DL has brought the use of large datasets and this is typically a problem for kernel approaches, which are not scaling up efficiently due to kernel Gram matrices. Nevertheless, kernel methods are still attractive and more generally applicable since they can equally manage diffe...
متن کاملA Compact Kernel Approximation for 3D Action Recognition
3D action recognition was shown to benefit from a covariance representation of the input data (joint 3D positions). A kernel machine feed with such feature is an effective paradigm for 3D action recognition, yielding state-of-the-art results. Yet, the whole framework is affected by the well-known scalability issue. In fact, in general, the kernel function has to be evaluated for all pairs of in...
متن کاملScalable Dyadic Kernel Machines
In the dyadic data prediction (DDP) problem, we observe labeled pairs (dyads) drawn from a finite Cartesian product M × U and form predictions for the labels of unseen dyads. This results in a sparse, non-linear prediction problem, for which kernel machines, like the Support Vector Machine, are well suited. However, the release of the 100 million dyad Netflix dataset has brought the issue of DD...
متن کاملFast and Scalable Local Kernel Machines
A computationally efficient approach to local learning with kernel methods is presented. The Fast Local Kernel Support Vector Machine (FaLK-SVM) trains a set of local SVMs on redundant neighbourhoods in the training set and an appropriate model for each query point is selected at testing time according to a proximity strategy. Supported by a recent result by Zakai and Ritov (2009) relating cons...
متن کاملCluster based RBF Kernel for Support Vector Machines
In the classical Gaussian SVM classification we use the feature space projection transforming points to normal distributions with fixed covariance matrices (identity in the standard RBF and the covariance of the whole dataset in Mahalanobis RBF). In this paper we add additional information to Gaussian SVM by considering local geometry-dependent feature space projection. We emphasize that our ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2019
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2019.03.031